

LAB N°0231

Membro degli Accordi di Mutuo Riconoscimento FA₁ IAF e ILAC

Signatory of EA, IAF and ILAC Mutual Recognition Agreements

Reggio Emilia, 30/11/2016

Spett. le Ditta T.E.A. S.p.A. Sede Legale Via Taliercio, 3 – 46100 MANTOVA

Stab. Via Cremona, 40 D/E/F Presso Cimitero Monumentale di Borgo Angeli 46100 MANTOVA

Rapporto di prova nº 36054/2016

Date Campionamenti:

- Campionamenti discontinui: 1º Prova: dalle 10:00 alle 11:00 IIº Prova: dalle 12:00 IIIº Prova: dalle 12:00 alle 12:00 alle 13:00 del 17/11/2016.
- Campionamenti in continuo: Prova unica dalle ore 10:00 alle 13:00 del 17/11/2016.
- Campionamenti discontinul (Diossine PCDD+PCDF); Proya unica dalle ore 10:00 alle 18:00 del 17/11/2016.

Verbale di Prelievo: VPRE8565/2016

Finalità Intervento: L'INTERVENTO HA LO SCOPO DI ESPLETARE TUTTI I CAMPIONAMENTI ED ANALISI PREVISTI PER IL CONTROLLO

PERIODICO SECONDO DISPOSIZIONI DELL'ATTO N°21/87 DEL 14/07/2011

Impianto: NUOVO FORNO CREMATORIO (Tipo GEM MATTHEWS CRM/6) - EMISSIONE E1

Punto di Prelievo: CAMINO DI EMISSIONE A VALLE DELL'IMPIANTO FILTRANTE

Impianto di abbattimento: POST-COMBUSTORE, CICLONE CON ADDIZIONE DI SORBALITE E FILTRO A MANICHE

Forma e dimensioni della sezione di misura: Circolare (diametro): 0,30 m

Area della sezione di misura (A): 0,071 m²

N° dei diametri e dei punti di campionamento: 12

Temperatura assoluta del gas T_e: 409 K (136 °C)

Pressione atmosferica (pbar): 101800 Pa

Pressione statica assoluta del gas pe: 101807 Pa

Massa molecolare media (M): 28,56 Kg/Kmole

Densità del flusso: 0,855 Kg/m3

Diametro dell'ugello di prelievo du 8 mm

Faltore di taratura del tubo di Pitot (a): 0,66

Punti: pressioni dinamiche (Δ pi) e velocità (ui):

	Δ pi (Pa)	ui (m/s)
1	54,9	9,21
2	61,8	9,76
3	34,3	7,28
4	54,9	9,21

		Δ pi (Pa)	ui (m/s)	
İ	5	31,4	6,96	
	6	54,9	9,21	
ľ	7	44,1	8,25	
	8	31,4	6,96	

	Δpi (Pa)	ui (m/s)	
9	60,8	9,69	
10	50,0	0 8,78	
11	33,4	7,17	
12	45,1	8,34	

Velocità media del flusso u: 8,40 m/s

Portata volumica normalizzata umida (Media dell'intero ciclo di cremazione): 1433 Nm³/h (ρ = 101.300 Pa ; T = 273 K)

Contenuto di vapore acqueo nei fumi: 0,074 kg/Nm3

Portata volumica normalizzata secca (Media dell'intero ciclo di cremazione): 1315 Nm3/h - Incertezza: 60 - (p = 101.300 Pa ; T = 273 K)

Ossigeno (O2) sul gas secco (Media dell'intero ciclo di cremazione): 12,1 %

RISULTATO CAMPIONAMENTI DISCONTINUI:

Camp.	Parametro	Unità di misura	Valore Tal Quale	Incertezza	Valore Ríf. al 11% di O₂	Incertezza	Limiti emissivi AIA
QF1277/16	Materiale particellare – 1° Prova	mg/Nm³	0,75	0,14	0,95	0,17	
QF2116/16	Materiale particellare - II° Prova	mg/Nm³	0,88	0,16	1,6	0,3	
QF1518/16	Materiale particellare – Ill ^a Prova	mg/Nm³	0,71	0,13	0,89	0,16	
===	Materiale particellare Valore Medio	mg/Nm³	0,78	0,14	1,1	0,2	10
QF1277/16 - S7092/16	Mercurio (Hg) – l° Prova	mg/Nm³	0,0030	0,0007	0,0038	0,0009	
QF2116/16 - S7093/16	Mercurio (Hg) – II ^a Prova	mg/Nm³	0,0028	0,0007	0,0051	0,0012	
QF1518/16 - S7094/16	Mercurio (Hg) - Ill° Prova	mg/Nm³	0,0031	0,0007	0,0039	0,0009	
===	Mercurio (Hg) Valore Medio	mg/Nm³	0,0030	0,0007	0,0042	0,0010	0,1
\$7095/16	Ossidi di Zolfo (espr. come SO _x) – lº Prova	rng/Nm³	6,7	1,4	8,5	1,8	_
S7096/16	Ossidi di Zolfo (espr. come SO _x) – II° Prova	mg/Nm³.	6,1	1,3	11,1	2,3	
S7 0 97/16	Ossidi di Zolfo (espr. come SO _x) — Ill° Prova	mg/Nm³	6,4	1,3	8,0	1,7	
===	Ossidi di Zolfo (espr. come SO _x) Valore Medio	mg/Nm³	6,4	1,3	9,0	1,9	50
S7098/16	Acido Cloridrico – 1º Prova	mg/Nm³	1,4	0,3	1,8	0,4	
S7099/16	Acido Cloridrico – II° Prova	mg/Nm³	1,3	0,3	2,4	0,5	
S7100/16	Acido Cioridrico – illº Prova	mỳ/Nm³	1,5	0,3	1,9	0,4	
===	Acido Cloridrico Valore Medio	mg/Nm³	1,4	0,3	2,0	0,4	30
QF1169/16 \$7147/16 – \$714816	Microinquinanti: PCDD + PCDF come Diossina equivalente	ng/Nm³	0,006863 (Vedi Tabella A)	0,001510	0,009666	0,002127	0,1

I valori Tal Quali riportati in labella sono normalizzati a 0°C e 0.1013 MPa e sono rileriti all'effluente gassoso secco.

Valore medio di ossigeno misurato durante il campionamento dei microinquinanti: 14,9%

Tabella A - PCDD e PCDF

Parametro rilevato	Unità di misura	Valore Norm. a 0°C e a 0.1013 MPa	Incertezza	Fattore di tossicità equivalente	Valore finale
2.3,7.8 Tetraclorodibenzodiossina (TCDD)	ηg/Nm³	0,001	0,000	1	0,001000
1.2.3.7.8 Pentaclorodibenzodiossina (PeCDD)	ηg/Nm³	< 0,002	===	0,5	< 0,000500
1.2.3.4.7.8 Esaclorodibenzodiossina (HxCDD)	ηg/Nm³	0,004	0,001	0,1	0,000400
1.2.3.7.8.9 Esaclorodibenzodiossina (HxCDD)	ηg/Nm³	0,002	0,000	0,1	0,000200
1.2.3.6.7.8 Esaclodibenzodiossina (HxCDD)	ηg/Nm³	0,004	0,001	0,1	0,000400
1.2.3.4.6.7.8 Eptaclodibenzodlosslna (HpCDD)	ηg/Nm³	0,002	0,000	0,01	0,000020
Octaclorodibenzodiossina (OCDD)	ηg/Nm³	0,005	0,001	0,001	0,000005
2.3.7.8 Tetraclorodibenzofurano (TCDF)	ηg/Nm³	0,009	0,002	0,1	0,000900
2.3,4.7.8 Pentaclorodibenzofurano (PeCDF)	ηg/Nm³	0,003	0,001	0,5	0,001500
1.2.3.7.8 Pentaclorodibenzofurano (PeCDF)	ηg/Nm³	0,003	0,001	0,05	0,000150
1.2.3.4.7.8 Esaclorodibenzofurano (HxCDF)	ηg/Nm³	0,005	0,001	0,1	0,000500
1.2.3.7.8.9 Esaclorodibenzofurano (HxCDF)	ηg/Nm³	0,005	0,001	0,1	0,000500
1.2.3.6.7.8 Esaclorodibenzofurano (HxCDF)	ηg/Nm³	0,005	0,001	0,1	0,000500
2.3.4.6.7.8 Esaclorodibenzofurano (HxCDF)	ηg/Nm³	0,005	0,001	0,1	0,000500
1.2.3.4.6.7.8 Eptaclorodibenzofurano (HpCDF)	ηg/Nm³	0,003	0,001	0,01	0,000030
1.2.3.4.7.8.9 Eptaclorodibenzofurano (HpCDF)	ηg/Nm³	< 0,001	222	0,01	< 0,000010
Octaclorodibenzofurano (OCDF)	ηg/Nm³	0,003	0,001	0,001	0,000003

Il valore finale delle singole PCDD e PCDF è il prodotto tra il valore normalizzato a 0°C e a 0,1013 MPa e il fattore d'equivalenza tossica. Per il calcolo del valore di emissione PCDD+PCDF come diossina equivalente si è fatto riferimento a quanto previsto nell'Allegato 1 della Direttiva 94/67/CE.

RISULTATO CAMPIONAMENTI CONTINUI:

ORA	Umidità (%)	O ₂ (%)	CO ₂ (%)	CO (mg/Nm³)	NO _x (mg/Nm³)	COT (mg/Nm³)
10:00 ÷ 10:30	8,9	12,1	6,5	4,5	168,4	2,8
10:30 ÷ 11:00	7,2	14,1	4,9	4,4	229,1	3,2
11:00 ÷ 11:30	5,3	16,8	2,4	7,7	109,6	5,2
11:30 ÷ 12:00	9,1	14,1	5,2	20,8	245,7	3,6
12:00 ÷ 12:30	6,9	12,3	5,9	4,0	225,2	3,3
12:30 ÷ 13:00	5,7	13,7	5,4	3,7	183,4	2,6
Val. Medio	7,1	13,9	5,1	7,5	193,6	3,5
Limite	i	Ī	1	50	200	20

I valori riportati in tabella sono normalizzati a 0°C e 0.1013 MPa e sono riferiti all'effluente gassoso secco e all'11% di ossigeno.

METODICHE DI CAMPIONAMENTO ED ANALISI:

Porlata/Temperatura	UNI 10169 (2001)
Materiale particellare	UNI EN 13284-1 (2003)
Mercurio (Hg)	UNI EN 13211 (2003)
Ossido di Zolfo (SOx)	UNI EN 14791 (2006)
Acido Cloridrico (HCI)	UNI EN 1911-1,2,3 (2000)
Umidità – Ossigeno (O ₂) – Anidride Carbonica (CO ₂) Monossido di Carbonio (CO) – Ossidi di Azoto (NO _X)	Analizzatore In continuo FT-IR, (G GÁS 10 M - General Impianti) - Oximat 6 - Siemens
Carbonio Organico Tolale (COT)	Analizzatore elettronico in continuo Thermo-FID ES
PCDD + PCDF come Diossina equivalente	Decreto Ministeriale 25/08/2000 (App. 1) + Decreto Ministeriale 25/08/2000 (All. 3) + Metodo UNICHIM N.825

I risultati riportali si riferiscono esclusivamente al campione analizzato.

Il presente Rapporto di prova non può essere riprodotto in forma parziale senza approvazione scritta di Studio Alfa S.r.I.

Conclusioni: Come si evince dai dati presenti nel Rapporto di Prova, i valori riscontrati nei campionamenti discontinui e le medie dei campionamenti in continuo, rispettano i limiti prescritti nell'Atto dirigenziale n°21/87 del 14/07/2011.

- Accreditato ACCREDIA secondo la norma UNI CEI EN ISO/IEC 17025;2005 con il Nº0231. (L'accreditamento non implica l'approvazione del prodotto da parte del laboratorio o dell'organismo accreditante).
- Certificato UNI EN ISO 9001:2008 n.14586.
- Iscritto al n.008/RE/005 del registro Regione Emilia Romagna dei laboratori abilitati a svolgere analisi nell'ambito delle procedure di autocontrollo delle imprese allmentari (riconoscimento con valldità nazionale). - Qualificato dal Ministero della Salute e da ISPESL ira i laboratori riconosciuli per effettuare analisi di fibre di amianto.
- Riconosciuto ai fini dei requisiti di idonella tecnica ai gruppi di prodotti Ecolabel "COPERTURE DURE" cod.021 secondo la Decisione della Commissione del 9 luglio 2009 (2009/607/CE) pubblicata sulla GUUE del 12/08/2009 L. 208.
- Iscritto all'Albo Nazionale Gestori Ambientali nella Categoria 9, classe D, ai sensi dell'art. 212 del D.Lgs. 152/06.

Responsabile del Laboratorio

Dott, Massimo Ferrari

LAB N:0233

Membro degli Accordi di Muluo Riconoscimento EA, IAF e ILAC

Signatory of EA, IAF and ILAC Mutual Recognition Agreements

Reggio Emilia, 08/09/2016

Spett. le Ditta T.E.A. S.p.A. Sede Legale Via Taliercio, 3 – 46100 MANTOVA

Stab. Via Cremona, 40 D/E/F Presso Cimitero Monumentale di Borgo Angeli 46100 MANTOVA

Rapporto di prova n° 27271/2016

Date Campionamentl:

- Campionamenti discontinui: 1º Prova: dalle 08:30 alle 09:30 IIº Prova: dalle 09:40 alle 10:40 IIIº Prova: dalle 10:50 alle 11:50 del 12/08/2016.
- Campionamenti in continuo: Prova unica dalle ore 08:30 alle 11:30 del 12/08/2016.
- Campionamenti discontinui (Diossine PCDD+PCDF): Prova unica dalle ore 08:00 alle 16:00 del 11/08/2016.

Verbale di Prelievo: VPRE5888/2016

Finalità Intervento: L'INTERVENTO HA LO SCOPO DI ESPLETARE TUTTI I CAMPIONAMENTI ED ANALISI PREVISTI PER IL CONTROLLO

PERIODICO SECONDO DISPOSIZIONI DELL'ATTO N°21/87 DEL 14/07/2011

Impianto: NUOVO FORNO CREMATORIO (Tipo GEM MATTHEWS CRM/6RC) - EMISSIONE E2

Punto di Prelievo: CAMINO DI EMISSIONE A VALLE DELL'IMPIANTO FILTRANTE

Impianto di abbattimento: POST-COMBUSTORE, CICLONE, TORRE DI REAZIONE, FILTRO A MANICHE

Forma e dimensioni della sezione di misura: Circolare (diametro): 0,32 m

Area della sezione di misura (A): 0,080 m²

N° dei diametri e dei punti di campionamento: 12

Temperatura assoluta del gas Te: 395 K (122 °C)

Pressione atmosferica (pbar): 101900 Pa

Pressione statica assoluta del gas pe: 101799 Pa

Massa molecolare media (M): 28,29 Kg/Kmole

Densità del flusso: 0,877 Kg/m3

Diametro dell'ugello di prelievo du 8 mm

Fattore di taratura del tubo di Pitot (α): 0,66

Punti: pressioni dinamiche (Δ pi) e velocità (ui):

	Δpi (Pa)	ui (m/s)
1	84,4	11,26
2	100,1	12,27
3	81,4	11,07
4	108,9	12,80

	Δpi(Pa)	ui (m/s)
5	88,3	11,52
6	86,3	11,39
7	74,6	10,59
8	63,8	9,79

<u> </u>	Δpi (Pa)	ui (m/s)
9	76,5	10,73
10	10 106,9 12,68	
11	84,4	11,26
12	91,2	11,71

Velocità media del flusso u: 11,42 m/s

Portata volumica normalizzata umida (Media dell'intero ciclo di cremazione): 2295 Nm³/h (p = 101.300 Pa; T = 273 K)

Contenuto di vapore acqueo nei fumi: 0,104 kg/Nm3

Portata volumica normalizzata secca (Media dell'intero ciclo di cremazione): 2050 Nm³/h – Incertezza: 90 - (p = 101.300 Pa; T = 273 K)

Ossigeno (O2) sul gas secco (Media dell'intero ciclo di cremazione): 9,7 %

Pagina 1 a 3

RISULTATO CAMPIONAMENTI DISCONTINUI:

Сатр.	Parametro	Unità di misura	Valore Tal Quale	Incertezza	Valore Rlf. al 11% di O₂	Incertezza	Limiti emissivi AlA
QF1348/16	Materiale particellare – l° Prova	mg/Nm ³	0,81	0,15	0,74	0,13	10
QF1860/16	Materiale particellare - II° Prova	mg/Nm³	0,67	0,12	0,86	0,15	10
QF1864/18	Materiale particellare – Ill° Prova	mg/Nm³	0,71	0,13	1,1	0,2	10
===	Materiale particellare Valore Medio	mg/Nm³	0,73	0,13	0,87	0,16	10
QF1348/16 S4695/16	Mercurio (Hg) – I° Prova	mg/Nm³	0,0053	0,0013	0,0049	0,0012	0,1
QF1860/16 - S4696/16	Mercurio (Hg) – II° Prova	mg/Nm³	0,0044	0,0011	0,0056	0,0013	0,1
QF1864/16 - S4697/16	Mercurio (Hg) – III° Prova	mg/Nm³	0,0049	0,0012	0,0074	0,0018	0,1
===	Mercurio (Hg) – Valore Medio	mg/Nm³	0,0049	0,0012	0,0058	0,0014	0,1
QF1390/16 S4715/16 – S4716/16	MicroInquinanti: PCDD + PCDF come Diossina equivalente	ng/Nm³	0,075016 (Vedi Tabella A)	0,016504	0,081539	0,017939	0,1

I valori Tal Quali riportati in tabella sono normalizzati a 0°C e 0.1013 MPa e sono riferiti all'effluente gassoso secco.

Valore medio di ossigeno misurato durante Il campionamento dei microlnquinanti: 11,8%

Tabella A - PCDD e PCDF

Parametro rilevato	Unità di misura	Valore Norm. a 0°C e a 0.1013 MPa	Incertezza	Fattore di tossicità equivalente	Valore finale
2.3.7.8 Tetraclorodibenzodiossina (TCDD)	ηg/Nm³	0,015	0,003	1	0,015000
1.2.3.7.8 Pentaciorodibenzodiossina (PeCDD)	ηg/Nm³	0,012	0,003	0,5	0,006000
1.2.3.4.7.8 Esaclorodibenzodiossina (HxCDD)	ηg/Nm³	0,005	0,001	0,1	0,000500
1.2.3.7.8.9 Esaclorodibenzodiosslna (HxCDD)	ηg/Nm³	0,008	0,002	0,1	0,000800
1.2.3.6.7.8 Esaclodibenzodiossina (HxCDD)	ηg/Nm³	0,008	0,002	0,1	0,000800
1.2.3.4.6.7.8 Epiaclodibenzodiossina (HpCDD)	ηg/Nm³	0,005	0,001	0,01	0,000050
Octaclorodibenzodiossina (OCDD)	ηg/Nm³	0,004	0,001	0,001	0,000004
2.3.7.8 Tetraclorodibenzofurano (TCDF)	ηg/Nm³	0,107	0,021	0,1	0,010700
2.3.4.7.8 Pentaclorodibenzofurano (PeCDF)	ηg/Nm³	0,047	0,009	0,5	0,023500
1.2.3.7.8 Pentaclorodibenzofurano (PeCDF)	ηg/Nm³	0,065	0,013	0,05	0,003250
1.2.3.4.7.8 Esaclorodibenzofurano (HxCDF)	ηg/Nm³	0,048	0,011	0,1	0,004800
1.2.3.7.8.9 Esaclorodibenzofurano (HxCDF)	ηg/Nm³	0,007	0,001	0,1	0,000700
1.2.3.6.7.8 Esaclorodibenzofurano (HxCDF)	ηg/Nm³	0,056	0,011	0,1	0,005600
2.3.4.6.7.8 Esaclorodibenzofurano (HxCDF)	ηg/Nm³	0,031	0,006	0,1	0,003100
1.2.3.4.6.7.8 Eptaclorodibenzofurano (HpCDF)	ηg/Nm³	0,020	0,004	0,01	0,000200
1.2.3.4.7.8.9 Eptaclorodibenzofurano (HpCDF)	ηg/Nm³	0,001	0,000	0,01	0,000010
Octaclorodibenzofurano (OCDF)	ηg/Nm³	0,002	0,000	0,001	0,000002

Il valore finale delle singole PCDD e PCDF è il prodotto tra il valore normalizzato a 0°C e a 0,1013 MPa e il fattore d'equivalenza tossica. Per il calcolo del valore di emissione PCDD+PCDF come diossina equivalente si è fatto riferimento a quanto previsto nell'Allegato 1 della Direttiva 94/67/CE.

RISULTATO CAMPIONAMENTI CONTINUI:

ORA	Umidità (%)	O ₂ (%)	CO ₂ (%)	CO (mg/Nm³)	NO _X (mg/Nm³)	SO ₂ (mg/Nm³)	HCL (mg/Nm³)	COT (mg/Nm³)
08:30 ÷ 09:00	12,8	10,4	7,1	14,8	138,3	10,3	0,8	3,8
09:00 ÷ 09:30	14,0	9,7	7,7	3,0	139,6	10,0	0,6	4,4
09:30 ÷ 10:00	8,9	13,1	5,3	3,1	177,0	20,2	2,6	6,8
10:00 ÷ 10:30	9,3	13,2	4,9	6,4	152,7	20,5	1,5	2,6
10:30 ÷ 11:00	14,3	9,9	7,4	24,8	150,8	31,9	0,5	6,4
11:00 ÷ 11:30	8,8	14,7	4,2	3,9	240,6	36,7	2,6	3,5
Val. Medio	11,4	11,8	6,1	9,3	166,5	21,6	1,4	4,6
Limite	1		-i	50	200	50	30	20

I valori riportati in tabella sono normalizzati a 0°C e 0.1013 MPa e sono riferiti all'effluente gassoso secco e all'11% di ossigeno.

METODICHE DI CAMPIONAMENTO ED ANALISI:

Portala/Temperatura	UNI 10169 (2001)		
Materiale particellare	UNI EN 13284-1 (2003)		
Mercurio (Hg)	UNI EN 13211 (2003)		
Umidità – Ossigeno (O ₂) – Anldride Carbonica (CO ₂) Monossido di Carbonio (CO) – Ossidi di Azolo (NOx) Ossidi di Zolio (SOx) – Acido Cloridrico (HCI)	Analizzatore in continuo FT-IR. (G GAS 10 M - General Implanti) - Oximat 6 - Siemens		
Carbonio Organico Totale (COT)	Analizzatore elettronico in continuo Thermo-FID ES		
PCDD + PCDF come Diossina equivalente	Decreto Ministeriale 25/08/2000 (App. 1) + Decreto Ministeriale 25/08/2000 (All. 3) + Metodo UNICHIM N.825		

I risultati riportati si riferiscono esclusivamente al campione analizzato.

<u>Conclusioni:</u> Come si evince dai dati presenti nel Rapporto di Prova, i valori riscontrati nei campionamenti discontinui e le medie dei campionamenti in continuo, rispettano i limiti prescritti nell'Atto dirigenziale n°21/87 del 14/07/2011.

- Accreditato ACCREDIA secondo la norma UNI CEI EN ISO/IEC 17025:2005 con il N°0231. (L'accreditamento non implica l'approvazione del prodotto da parte del laboratorio o dell'organismo accreditante).
- Certificato UNI EN ISO 9001:2008 n.14586.
- Iscritto al n.008/RE/005 del registro Regione Emilia Romagna dei laboratori abilitati a svolgere analisi nell'ambito delle procedure di autocontrollo delle imprese alimentari (riconoscimento con validità nazionale).
- Qualificato dal Ministero della Salute e da ISPESL tra i laboratori riconosciuti per effettuare analisi di fibre di amianto.
- Riconoscluto ai fini del requisiti di Idoneità tecnica ai gruppi di prodotti Ecolabel "COPERTURE DURE" cod.021 secondo la Decisione della Commissione del 9 luglio 2009 (2009/607/CE) pubblicata sulla GUUE del 12/08/2009 L. 208.
- Iscritto all'Albo Nazionale Gestori Ambientali nella Categoria 9, classe D, ai sensi dell'art. 212 del D.Lgs. 152/06.

Responsabile del Laboratorio

Dott, Massimo Ferrari

Il presente Rapporto di prova non può essere riprodotto in forma parziale senza approvazione scritta di Studio Alfa S.r.I.